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PRELIMINARY ANALYSIS OF THE HALF-WAVE BRIDGE MAGNETIC AMPLIFIER 

Prepared by: 

H. H. Woodson 

ABSTRACT: Two half-wave bridge magnetic amplifiers — one with parallel 
reset circuits, the other with series reset circuits — are analyzed using 
only linear circuit theory and Faraday's Law. The principal assumptions 
used in the analysis are rectangular B-H loop reactor core material and 
resistive rectifier impedances* The results of the analysis are discussed 
with particular emphasis on the effect the various circuit parameters 
have on the amplifier gain. Seme design criteria are established and 
theoretically justified. The extensions of this type of analysis to 
other than the half-wave bridge circuit are indicated. 

U. S, NAVAL ORDNANCE LABGiiATORY 
White Oak, Maryland 
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The use of the half-wave bridge magnetic amplifier in high performance 
.<*ervo systems has proved practical. Optimum design of this amplifier 
is best achieved if the operation is described quantitatively in such a 
manner that the effect of each individual component on the amplifier 
gain is apparent. 

Under the Magnetic Amplifier Development Program, N0L-A8f-l-2~54» and 
the Magnetic Amplifier Servo System Development Program, NOL-B^a-78-2-54» 
a quantitative analysis was started which gave the information desired. 
This report covers the preliminary part of this analysis. Further 
detailed analysis and experiment! checks will be given as they are com- 
pleted. 

EDWARD L. WCODYAHD 
Captain, USN 
Commander 

D. s. KUZZE/, JR. 
3y direction    ( 
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PRELIMINARY ANALYSIS OF THE HALF-WAVE  BRIDGE MAGNETIC AMPLIFIER 

INTRODUCTION 

12 3 1. The application of the half-wave bridge magnetic amplifier ' ' to 
high-performance servo systems has been quite successful. This suc- 
cess is attributable to a number of advantages this circuit has when 
compared to other types of servo amplifiers,  ine principal advantages 
of the half-wave bridge compared to vacuum tube amplifiers are rugged- 
ness and reliability, and ease and simplicity of compensation.4->5>o,7 
Compared tc conventional full-wave magnetic amplifier circuitr the half- 
wave bridge magnetic amplifier has the advantages of fast i eapomie-'-'-' 
and ease and simplicity of compensation. 

2. When the half-wnve bridge magnetic amplifier was first used the 
design of an amplifier for a specific application was achieved thro ^h 
the use of past experience and cut-and-try procedures. A partial  lution 
to this difficulty was obtained when a good qualitative design pre edure 
was developed at the Naval Ordnance Laboratory. This desigh procedure, 
presented in reference. (3), pointed out the significant parameters to be 
adjusted for best operation and gave the method of adjustment. Being 
qualitative, this design procedure still left some adju.stii.ents to engineer- 
ing judgment. 

3.  The analysis in the present report is intended to supplement the 
design procedure given in reference (3). This is achieved by using the 
same fundamental approach as in this reference, but the circuit is 
examined in greater quantitative detail. 

DESCRIPTION OF CIRCUITS 

U»      The half-wave bridge magnetic amplifier circuits to be analyzed are 
3hown in figures 1(a) and 1(b). The only difference between the circuits 
is in the configuration of the reset circuits. The bridge of figure 1(a) 
has parallel reset circuits, while the bridge of figure 1(b) har. series 
reset circuits. The differences in the operation of the two circuits 
will be made evident in the analysis to follow. 

5.  Each of the circuits of figure 1 employs two saturabla reactors. 
One reactor has power windings N, and N,, reset windings i\;_ , and control 1     > ^ 

winding N  ; while the other reactor ha3 power windings N,, and N , reset 

winding N  , and control winding N  .  Note that aii windings with odd 
r2 c2 

subscripts are on one reactor while all with even subscripts "are on the 
other reactor. 
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6. Briefly the half-wave  bridge circuit operates as  follows.     The bridge 
stays  balanced under zero signal conditions  because during the reset • 
half-cycle  (when the supply voltage has  the opposite polarity to that 
shown in figure 1)   the flux cnange  from saturation,  produced by voltage 
across windings Nr    and Nr  ,   is  the same.    As a result, during the 

operating half-cycle  (when the supply voltage has the polarity shown in 
figure 1)  both reactors reach saturation at the same time maintaining 
zero load current.    A control voltage, vc, applied to the differentially 
connected control windings Nc,  and N0    will produce a difference in flux 
between the two reactors during the reset half-cycle.    This flux differ- 
ence causes the reactors to saturate at different times during the nex^ 
operating half-cycle.    During the interval of time when one reactor is 
saturated and the other is unsaturated,  current will flow through the 
load resistance R^.    The direction of load current flow in determined by 
the polarity of the control  voltage. 

7. The presence of the rectifiers  in the circuit roakos the conditions 
different during the reset and operating half-cycles;  consequently, these 
two modes of operation must be considered separately.    Before the analysis 
can be started, however, assumptions must be made regarding the non- 
linearities in the circuit* 

ASSUMPTIONS 

8. Each of the reactors is assumed to be a four terminal-pair network 
with a number of turns associated with each terminal pair as shewn in < 
figure 21*.    This network is assumed to have two modes of operation.    If 
the external circuits can supply sufficient current and the core flux 
level, 0 , satisfies the rolation 

l<M<|4>,| W 

where 0a  is the saturation flux of the core; then the following two 

relations describe the operation of the reactor: 

-S-5 -£*.- &-~    J&- /*\ 

and 

N, i, +• Nxit -H N,'V+ Nc U * (NI). (3) 

* The d-c resistances of the windings are lumped with the external circuits. 
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where (NX) is the coercive ampere-turna of the core* To maintain accuracy 
in design this coercive force must be measured under the approximate 
conditions to be analyzed, i.e. at the line frequency to be used and 
operating about a minor loop.  If the external circuits cannot supply 
sufficient current to satisfy equation (3), or if the core flux 0 
equals the saturation value ± 0S,  each pair of terminals of the network 
of figure 2 is short-circuited with no mutual coupling between terminal 
pairs. The above characteristics describe a reactor with the flux ampere- 
turns loop shown in figure 3 with 

-tO        -•© -OO 

and 

(N» i)- N, 'I + Ntit +• N„\¥ + N< «c. m 

If the loop is crossed at any flux level, the operating path i3 at con- 
stant flux as shown by path a-h in figure 3. The winding resistances are 
lumped with the external circuits and the leakage reactances are assumed 
zero, a good assumption with toroidal reactors. The above assumptions 
concerning reactor characteristics are quit.e accurate for a reactor using 
a rectengular-loop core material such as Orthonol. 

9. The rectifiers are assumed to have the equivalent circuit shown in 
figure Ut  where the rectifier, KX, is perfect (zero forward impedance, 
infinite reverse impedance) and Rj. and R^ are the constant forward and 

reverse resistances respectively*  There are two sources of error in 
these assumptions. First, the forward and reverse resistances are not 
constant; however, when the values are measured as average values under 
a-c operation at approximately the frequency, voltage, and current levels 
occurring in the amplifier circuit, the errors will not be intolerable 
Second, selenium rectifiers exhibit a capacitive reverse impedance; thus, 
the error due to capacitive reverse current increases with Increasing 
line frequency. The addition of an equivalent capacitance to the circuit 
of figure U  complicftes the analysis to follow, and the analysis neglecting 
the capacitance is sufficiently correct; consequently, capacitance of 
the rectifier is neglected. Of course, if germanium diodes are used, 
the capacitance is negligible and the equivalent circuit of figure U 
becomes a better approximation. 

10. All other components in the circuits of figure 1 are assumed to be 
resistive. 
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ANALYSIS FOR QUIESCENT CONDITIONS 
(Complete Analysis in Appendices A, B and C) 

11. In the design of an amplifier for a given application, a knowledge 
of the quiescent operation is desired for two reasons*  First, the "firing 
angle" (the angle during tne operating half- cycle at which the reactors 
.Maturate) must be cd.ju.^ted to provide ths proper phasing of the funda- 
mental frequency component of the output voltago to provide optimum con- 
trol of a two-phuse servo motor or to piece the output pulse at the 
position in the operating half-cycle to give optimum control of a suc- 
ceeding cascaded amplifier stage. Second, the quiescent power will be 
limited by the specified allowable temperature rise in the amplifier. 

12. The quiescent "firing angle", OJt^, for the bridge of figure i(a) 

with parallel reset is given by equation (Cll) of Appendix C: 

while tne quiescent "firing angle" for the bridge o*' figura 1(b) with 
.serins reset is given by equation (C12) of Appendix C: 

»'.-»••' f'-l^r^W «»-«. - +*f «.)). » 
In equatlor.3   (6) and  (7)   the  factor     Oe    is given by equation (All) of 
Appendix A us: 

N,   rrto ,+*Tf„ 
In the ubove expressions: 

M = Number of turns on reset winding 

N = Number of turns on one power winding 

R - Resistance of reset circuit 
b 

IC = rteverse resistance of one power circuit rectifier 

V "- Amplitude of supply voltage 
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CO    • Angular frequency of Sttj.. ly voita^e 

(NI) = Coercive mmf of reactors. 

-    The fact that load considerations  fix rectifier reverse  resistance 
may not be readily obvious because the rectifier forward  impedance is 
the parameter primarily fixed by load considerations.    The  type of rec- 
tifier  (selenium,  germanium, etc.)  to oe used  is chosen from operating 
conditions   (temperature, voltage,  etc.) and  for any type of rectifier 
the reverse resistance varies nearly in direct proportion to  the forward 
resistance. 

13. In the design of an amplifier for a particular application the power 
winding turns, Na, rectifier reverse resistance,  R„, and coercive mmf  (NI) 
are determined from load considerations-',  i.e.  power requirements and 
impedance level*. 

14. The parameters remaining for adjustment of the "firing angle" are 
the reset resistance, Rb, and the reset turn3, N .    After the proper 
firing angle has been chosen,  the values of R^ and Nr are set by gain 

considerations to be discussed later,  using either equation  (6)  or  (7) 
as a constraint on R,   and N  , depending on whether parallel or series 

reset is used. 

15. The considerations discussed above determine all the parameter 
values in the expression of equation (6) or (7). Thus, control over the 
quiescent power must be exercised with some parameter other than those 
givan in these equations. Tha average quiescent power, P., i3 given by 

equation (C6) of Appendix C as: 

where R_ - Series resistance in line s 

R« = Saturated forward impedonce of one arm of power circuit 

and the firing angle to t- i3 given by equation (6) for a bridge with 

parallel reset or equation (7) for a bridge with series reset, oince 
all the parameters determining the firing angle, CO t , have already been 

determined, the only parameters left for adjustment of the quiescent 
power are the resistances Rg and Rj..  In the treatment of pain to be 

given subsequently it will be shown that the guin is not affected by the 
line resistance R , while it is affected by the saturated impedance of 

the bridge Rf.; consequently, the line resistance R_ can bo used to limit 

the quiescent power dissipated in the brlipo while not affecting the 
gain of the stage. 
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ANALYSIS FOR SIGNAL CONDITIONS* 
(Complete Analysis in Appendices D, E, F, G and H) 

16. For the half-wave oridge circuit with parallel reset circuits of 
fieure J(a) the average load voltage, V , as a function of the direct 

control voltage, Vc, is given by equation (Gl) of Appendix Gt 

+ A^JiJStS _ fee. .!«-(> 

-co« jiV'tf****' 

-sih-V*.-"^)]} 

ft 

At *k Vc 

"> 7C 

04 

where « is given by equation (8) and o^, «2, and ^ are given by 

equations0(DS), (D19), *nd (D34) of Appendix D thus: 

«i = 

* 2k JL 
fl» 

* The analysis in this report is curried out for a direct control vol- 
tage; however, any control voltage which is a specified periodic time 
function with the period equal to the period of the supply voltage can 
oe used. The modifications that need to be made in the analysis for 
such a voltage are evident in the form of the analysis. 
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Ofl 

K, 
—- 4- 2 —f 

Ry   Rn 

64 

17. For the bridge with series reset circuits of figure i(b) the avuragc 
load voltage t<s a function of the direct control voltage i9 from equa- 
tion (HI) of Appendix H: 

V, 
Rc+*lNe  "T 

W* R*     ^ 
JJ« mZL . 3; K*—n  * co* i«« I* -«.V4) 

-cos s 

-«m'(«.-«.V.)H (14) 

where ocQ is given by equation (8),  OC. is given by equation (11) and 

Of*  and K2 are given by equation (E13) and (E31) of Appendix E as: 
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«,;= 3SJ5 vfL1 t*^ ^ (i*) 

K, = f3f- 03 

18. Note  that the line resistance Rs does not appear in either equa- 
tion  (10) or (14)  indicating that the gain of the stage is independent 
of this resistance.    Thus the quiescent power dissipated in the bridge 
can be limited by this resistance without affecting the gain of the 
stage.    As pointed out below, a value of Rfl too large will limit the 
maximum output of  the stage. 

19. Equations  (10) and  (14)»  the transfer function?     or the bridges of 
figures 1(a) and 1(b) respectively, appear quite complicated.    These 
equations art useful in an investigation of the magnitudes and types of 
non-linearitiea  inherent in the circuits when "ideal components" 
(i.e. rectangular 2-H loop cores and resistive rectifiers) are assumed. 
In a practical amplifier the non-1inerrlties  indicated in equations  (10) 
and  (14/  are small compared to the non-linearities caused by the break- 
down of the assumptions on which the equivalent circuits are based* 

20. In the analysis of the reset half-cycle (see Appendices D and E) 
the power circuit rentifisrs were assumed to have reverse voltage on 
them during the entire reset half-cycle,    Control of the circuit is 
effected by increasing the volt-time integral on one reactor while de- 
creasing it on the other.    These changes in volt-time integrals are in 
turn effected by changing the voltages on the reactors.    If the voltage 
on one renctor becomes  high enough to overcome the supply voltage,  for- 
ward current will flow through the power roctifiers associated with that 
reactor and form a low impedance path, shunting the control winding of 
that reactor and thus limiting the volt-time integral that can be 
applied to that reactor.    For example, consider the power circuits of 
figures  (15) and  (18).    As the control voltage Vc is increased in the 
polarity shown,  the voltage e      will  increase while the voltage ep 

will decrease.    When the voli^e 2(Ka/Nc)«e    tries to  become greater 

than the supply voltage v_  the pownr circuit rectifiers 'associated with 
reactor 1 conduct forward current. Consequently, for these rectifiers 
the forward resistance Rr must be substituted for the back resistance 

ll 
Pu and, since R  « R^, the control circuit of reactor 1 is shunted 

8 
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by a very low impedance.    Thuii  the flux change  in reactor 1   is  limited 
at this  voltage level and  the gain of the bridge  falls off rapidly at 
this point.     In most practical amplifiers  this effect  is  the primary 
limitation on the extent of the linear range. 

21.     In  the analysis  of the operating half-cycle  (3eo Appendix F),   tho 
conditions  for validity of  the analysis are that  the  firing tine of 
reactor 2,  t^ be greater than zero,  and the  firing time of reactor i,  to 

bo leas than   ~^/<x) .      When either of these conditions  is not sutisfied 
the analysis of the operating half-cycle breaks down and  the gain falls 

M. 
V 

k -_ (.   Ri   ) (    « N«   \ N. ^ fl7) 

and equation (14)  can bo simplified to: 

V±    /_g^V K*N*      ^ -^   COS- «o . 0* 

Both of these equations have the same form: 

where K and at    are independent of the control turns N . Since the 
o       r c 

control circuit resistance Hc is determined by the control .source nnd 

9 

off rapidly.     In n:ost circuits   the parameters  can  be adjusted so that 
this limit on the analysis is reached at a larger value of control vol- 
tcre than the limit on the reset half-cycle discussed previously.    If 
too large a line resistance, R ,  is used,  the firing time,  tQ, of reactor 1 

imay reach the value    ^/u\     at a vulue of control  voltare at which the 
analysis; of the reset circuit still holds,  thus limiting the maximum out- 
put of tho amplifier. 

22.    Since the nnn-linearities  indicated in equations  (10) and   (14) are 
second order effects compared  to  the non-linearities resulting from a 
'.breakdown of the assumptions in tho analysis,  they may be dropped and 
equation  (10) can be simplified to: 
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the rei.ainder o€  the parameters are fixed from considerations of the 
load and the amplifier firing angle, they are generally fixed in any 
application. Therefore, the control turns should be optimized for maxi- 
mum gain. When the expression of equation (19) is differentiated with 
respect to N, and equated to zero the condition imposed upon N„ to pro- 

C c 
duce maximum gain is: 

Nc-Vf- (Z£» 

oubstitution of this expression Into equation (i9) yields: 

X./ RL  \ [El \ Kl 
Zw "'  *• • (20 

Much good design information can be obtained from this expression; how- 
ever, the results are more lucid when the power gain of the amplifier is 
studied. Using the expression of equation (21), the power gain, with 
control turns Nc adjusted according to equation (20), is: 

\Vc/ Rw "(R^R^Mir* ^ 
cos <*o). (ZZ) 

Notft that this expression is independent of both control turns N and 

control circuit resistance R ; consequently, so long as the control cir- 

cuit is optimized according to equation (20) the power gain is a constant 
maximum independent of the impedance level of the control circuit. 

23. To allow study of the effect of different parameters on the power 
ruin, values of K, from equation (13) and Ot    from equation (8) are 

substituted into equation (22) to give the power gain for the circuit 
with parallel reset (figure 1(a)). 

r 
CCS 

7V3T 

» + #%J 
(2Z) 

oubstitutlon of  OC  and K_ from equation (16) into equation (22) yields 

the corresponding power gain for the bridge with series reset (figure 1(b)), 

1C 
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2 r        EttiDLSf   1* 
(24) 

24* Although optimization of these two expressions with respect to the 
various parameters is quite complicated, useful design information can 
be obtained by studying the expressions when ideal component? are assumed. 

25. First, when ideal reactors are assumed (coercive, (NI), equal to 
zero), the argument of the arc cos term in each of the power gain ex- 
pressions goes to zero, giving for equations (23) and (24) respectively: 

Thus with ideal reactors tha gains of the bridges of figure 1 are limited 
principally by rectifier .evorse resistance R^. 

26. When the rectifier reverse resistance is made very lar/je the ex- 
pressions of equations (^3) and (.?£) become respectively: 

U/ *. (R^fVf **a T?Rk L     NO4 J ' (27) 

\Vt/ Rt    (Ru+ Rf 4ir*L NAiJ 

27. It is evident from equation (27) that, for the bridge with parallel 
ruaet the power cQi-n i-3 limited by the reset circuit, while in the 
bridge with series reset the power gain increases directly with the rec- 
tifier reverse resistance.  It is pointed out that with dry-di3C recti- 
fiers the reverse resistance of a rectifier can be increased with an 

11 



NAVORD Hoport 3596 

attendant increase in forward resistance; consequently, since ths term 
R~ in the above expressions contains the forward-resistance of a power 

rectifier* caution must be used in trying to achieve higher gain by 
increasing the power rectifier reverse resistance.  The expression of 
equation (28) shows that if synchronous choppere are u^ed for the power 
rectifiers quite a large gain can be obtained with the bridge having 
series reset. 

28. From the nature of the arc codine it is evident that equation (28) 
can be further maximized by requiring that the reset resistance R. tx» 

aero* This reduces equation (23) to: 

QL^tu   _ ft.      3S ,,* 
XvC/  --u  V'-I.-.-W 

(Note that thia expression is independent of the coercive, (Nl).)  To 
achieve this and still have a good linear range in the amplifier, the 
reset turns Nr must be greater than the power turns N8 as shown by a 

consideration of the firing angle (equation (8)) and a study of the 
equivalent circuit. One complication arises in such an adjustment.  Due 
to the magnitudes of the voltages appearing in the reset circuit a 
chopping action is required to keep the reset circuit from loading the 
power circuit during the saturating half-cycle. This chopping action 
can be achieved through the use of a synchronous chopper or a biased 
rectifier. 

CONCLUSIONS 

29. The special cases for the bridges of figure 1 given above demonstrate 
the usefulness of this analysis. The analysis can be examined in greater 
detail to give more information concerning the effects of various com- 
ponents on the operation* 

30. Since the time delay through a half-wave bridge magnetic amplifier 
stage is a constant, independent of gain, and since the gain is mainly 
determined by the power rectifier reverse resistance, "figure of merit" 
as applied to full-wave circuitry has no meaning in connection with the 
half-wKve bridge. This is true because the gain is not a function of 
the time constant of the amplifier. 

31. A conventional full—-av« magnetic amplifier circuit can be broken 
down into two half-wave circuits; consequently, aa analysis of this type 
is applicable to a full-wave circuit with only one generalization — that 
of an additional control voltage feeding into the "-ontrol circuit of 
each half-wave circuit from the other circuit. Such a view-point is a 
new approach to an analysis of full-wave circuits because most analyses 
in the past have started with a single-ended full-wave circuit as the 
fundamental building block. 

12 
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ADnfUmTV     * JW   I  L1IJI4A    A 

ANALYSIS DUHING  RESET HALF-CYCLE OF CIRCUIT 
WITH PARALLEL RhSET FOR QUIESCENT CONDITIONS   (v    • 0) c 

1.  Under quiescent conditions (vQ = 0), the bridge of figure 1(a) is 
always balanced; therefore, no net induced voltage appears in the con- 
trol circuit. Consequently, the control circuit can be disregarded in 
an analysis of quiescent conditions. Since the bridge is always balanced 
both reactors operate identically. Hence only one reactor need be con- 
sidered. 

2*  At the 3tart of the reset half-cycle (t = 0), both reactors are at 
point a in figure 5« As the line voltage builds up, the operation of 
the reactors proceeds from point a to point b in figure 5, reaching 
point b at the tine t-j.  In view of the assumptions concerning the 

reactors and rectifiers, the equivalent circuit during the time interval 
0 < t < t, is shown in figure 6. Additional assumptions concerning this 

equivalent circuit are that currents flowir during the reset half-cycle 
cbuse negligible voltage drops across the line resistance R and the 

load resistance R,» and the circuit parameters ere so adjusted that re- 

verse voltage is always applied to the rectifiers. 

3.  Considering only one reactor, since both operate identically, the 
equivalent circuit of figure 6 is described by the following equations: 

»*-*» *° 
2N,ij + N,..V = N.'. (AS 

U,      These equations hold for the interval of time 0 < t < t , where t. 

is defined us the time at which the net ampere-turns on either reactor 
equals the coercive value, (NI). The time t, is found from the above 

definition and equation (A3) thus: 

glV, sir. m% +. g*\J.in •* =(NI). M 

Solution of equation  (A4.)  for the time t,   gives t 

13 
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RbCNIj m 

$.  Aftar the time t.. the operation of the reactors proceeds from 

point b to point c on the loop of figure 5» arriving at point c at the 
time t2. Thus, in the time interval t < t < t2, the equivalent circuit 
is that shovn in figure 7. The equations describing either reactor in 
this equivalent circuit are: 

(AC) 

(AT) 

(Atf 

Two quantities are desired from this set of equations — the voltage e 
to find the flux 0 produced in the reactors during the re^et half-cycle, 
and the time t« al and the time t0 at whic'   the voltage e    goes to zero,  such that 

6.      Simultaneous solution of equations  (A6),   (A7), and  (A8) yields for 
the voltage e_: 

e w 
The time t2, defined above,  is found by equating e    to zero.    The result 
is: 

7.      The flux change 0 from figure 5 is given by Faraday's Law to be. 

(AH) 

u 
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Substituting equation (AV)   into  (All) and evaluating the Integral with 
the limits defined  by equations   (A5)  and   (AID)  give:.* 

4>« 
^.(••fcfc) u>N> 

1 + 21 fflk 
cos sir! 

1     Nt *« 

To simplify the notation let: 

. (Aia^ 

i+ 

And then equation (A12) becomes; 

gfcfla 

N^« 

**(•***) 

(Al* 

<H^\^;r*" - £•< «w«. - *.«""vj, 
i+ w R« /AM) 

8.  During the time interval t^ 4C^<-'t^io    > the external circuits can 

not' supply the coercive ampere-turns of the reactors and the reactors 
operate from point c to point d in figure 5. During this interval of 
time the equivalent circuit is once again that shown in figure 6. No 
flux change occurs during this interval; hence the total flux change 
during the reset half-cycle is given by equation (Al/>). 

15 
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APPENDIX B 

ANALYSIS DURING RESET HALF-CYCLE OF CIRCUIT WITH SERIES RESET 
FOR QUIESCENT CONDITIONS (vc = 0) 

1. Under quiescent conditions (v =0), the bridge of figure 1(b) is 

always balanced. Under these conditions the not induced voltage in the 
control circuit is always zero; consequently, the control circuit can be 
disregarded in this analysis. A130, since both reactors operate iden- 
tically, the operation of only one reactor need be considered. 

2. At the start of trie reset half-cycle (t = 0), both reactors are at 
point a in figure 5.  As the line voltage increases, the operation of 
the reactors proceeds from point a to point b in figure 5, arriving at 
point b at the time t,. Then, for the interval of time 0 < t <t., the 

equivnlent circuit of figure 1(b) is shown in figure 8, assuming once 
again thet- currents flowing during the reset half-cycle cause negligible 
voltage drops across the line resistance Rg and the load resistance R , 

and the parameters are adjusted to maintain reverse voltage on the 
rectifiers. 

3. Considering only one reactor, the circuit of figure 8 is described 
by the following equations: 

These equations hold for the interval of time 0< t< t where t. 1B 

defined as the time at which the net ampere-turns on either reactor 
reaches the coercive value, (NI). At time t^ equations (Bl) and (B2) 

substituted into oquation (B3) yield: 

£W, tin u.t, +£**** «*t,.(NXy (M> 

solution of equation (134) for the time t. gives: 

16 
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N- "pi 

U>      After the time t, the operation of the roactors proceeds from point 
b to point c on the loop of figure 5, arriving at point c at the time t~. 

In the time interval t^< t < t2 the equivalent circuit ia shown in 
figure 9. The equations describing this circuit are: 

Two quantities are desired from this set of equationa — the voltage e 
to allow calculation of the flux 0 that ia changed in uhe reactors during 
the reswt half-cycle, and the time t~ at which the voltage e goes to zero 

such that "^ < t2 < "% • 

5.  Simultaneous solution of equations (B6), (B7) and (B3) yields for 
the voltage er: 

Th« time t , defined above, is found by equating the voltage e to zero 
* r 

and  is  found  to  be: 

6.       The flux change 0  (see figure 5)   is  found by Faraday's Law: 

t, 

17 
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Substitution of equation  (B9)   into  (Bll) and evaluation of the integral 
with th« limits defined by equations  (B5) and  (BIO) leads to the result; 

* 

With the definition, 

<xA= 

equation (B12)  becomes: 

« 

(ei*) 

(813") 

(©>•) 

7.  During the time interval tj < t < "%>  the reactors operate from 

point c to point d in figure 5 and the equivalent circuit is once again 
that shown in figure 3. No flux change occurs during this interval; there- 
fore, the total flux change during the reset half-cycle is given by 
equation (B14-). 

13 
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APPENDIX C 

ANALYSIS  DURING OPERATING HALF-CYCLE OF BOTH CIRCUITS 
FOR QUIESCENT CONDITIONS   (vc = 0) 

1. With the assumption that the reset circuits cause negligible loading 
on the reactors during the operating half-cycle,  the equivalent circuits 
of figures 1(a) and 1(b)  become the sume for thii? period of operation. 
At the start of the operating half-cycle both reactors are at point d of 
figure 5.    The currents  that flow while the cores are unsaturated are 
assumed to cause negligible voltage drops across  the line resistance R_, s 
the rectifier forward resistance Rj., and the loud resistance Rr f there- 
fore, the operation of the cores changes from point d to point e in 
figure 5 in essentially zero time. This leads to the equivalent circuit 
of figure 10 for the time interval 0 < t < t- where t.. is the time at. 

which the operation of the reactors reaches point f in figure 5«      • 

2. The net induced voltage in the control circuit is zero; therefore, 
the control circuit is omitted from the equivalent circuit. 

3. In view of the assumptions, the supply voltage v. is applied directly 

across the power windings as shown in the equivalent circuit; conse- 
qucmtly, the time t, is found from Faraday's Law: 

"» +-!*/**» ^ 
where 0 is the flux level in the two reactors after the next previous 
reset half-cycle as shown on the loop of figure 5« Evaluating the inte- 
gral i.n equation (Cl) leads to: 

Cos coi»= i Vf^ *'    ' 

Equation (C2) gives the quiescent "firing angle" OJt^ as a function of 

the flux JPl produced during the next previous reset half-cycle and the 
system parameters. 

U»      During the time interval t,< t < J%)    the reactors are saturated 

and operate at the saturation flux level 0a (see figure 5)» During this 
time interval the equivalent circuit is that shown in figure 11.  Note 
that the bridge is still balanced; therefore, no current flews through 
the load resistance R^ during this interval. The current flowing in the 

bridge during this interval is: 

19 
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2 '> Tl^SL ' (<»> f»i*-Rf 

where i is the current flowing in each arm of the bridge, 
s 

5.  During the time interval t_< t < ^%j  the instantaneous power 

into the bridge is 

P-2is\j, e* 

end the average quiescent power is given by: 

f< £JZi.rt dr. (c$ 

Substitution of equation (C3) into equation (C5) and evaluation of the 
integral fives the quiescent power: 

** = T- Fa hft fr" -«»1»+ *'"•*• co»u>f,]9 

If the quioscent power P is dosired in terms of the "firing angle" " 

(jj t-j, equation (C6) is used. Substitution of equation (C2) into (G6) 

leu (is to: 

P _ J IS— hr — cos (I •"•:; x ) 

When the quiescent power is desired us u function of system parameters 
only, the /ulue of the flux 0 for the parallel reset circuit can be sub- 
stituted from equation (A14) of Appendix A und for the series reset 
circuit from equation (D14) of Appendix 13.  In this manner the quiescent 
power is determined for either bridge circuit of figure 1 as a function 
of adjustable system parameters. 

20 
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6.       if thf average value of the quiescent current in  each arm of the 
bridge  is  desired,   it  mm   be   found   from equation   (C3) : 

TT 

t, 

Evaluation of the integral givesz 

And substituting from equation (C2), (C9) becomes: 

£*)• «<» 

whore  oc  is defined by equation (A13) of Appendix A*  The firing 

angle  OOt for the bridge with series reset of figure 1(b) is found as 
5 

a function of the sy:;tem purar.eter." by substituting equation (B14.) from 
Appendix B into equation (C2), thus: 

The ippropriate value for the flux 0 can be substituted into this ex- 
pression to obtain the average value of the quiescent current as a func- 
tion of adjustable system parameters, 

7.  Another quantity that may be desired from an analysis of the quies- 
cent conditions is the firing angle CO t_ as a function of the uy.item 

parameters. For the bridge with parallel reset of figure i(a) this func- 
tion is found by subatitution of equation (A!£) from Appendix A into 
equation (C2) to give 

21 
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& 

where CXQ is defined as above. 

22 
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APPENDIX D 

ANALYSIS  DURING RESET HALF-CYCLE OF CIRCUIT 
WITH PARALLEL RESET FOR DIRECT CONTROL VOLTAGE,  Vr 

1. Luring the reset half-cycle,  the control voltage VQ causes a flux 
difference   A0 between the two reactors.    This  flux difference   A0 in 
turn determines the amount of loud current that flows on the next, 
operating half-cycle.    Therefore, the quantity to be found from an 
analysis of the reset half-cycle  is the flux difference   .A 0 as a function 
of the control volwige Vc- 

2. When the control,  voltage has the polarity shown in figure 1(a) and 
t = 0  (start of the reset half-cycle),  reactor 1 is operating at point a 
and reactor 2  is at point b on the loop of figure 12.    The distance ac 
is equal  to the distance be.    As  the supply voitago increur.os,  the opera- 
tion of both reactors will proceod to the left i      >hown by the arrows 
in figure 12,  with reactor 1 reaching point d at the  time 1 ..    The 
operation of reactor 2 will reach point d at a later time,  t-. 

3*      During the time interval 0 < t <. t.   the equivalent circuit of 
figure 1(a)  is given in figure 13.    Some assumptions are made concerning 
this circuit.    Currents that flow during the reset half-cycle cause 
negligible voltage drops across the load resistance, R, , and  the line 
resistance, R3.    The total reset circuit resistance including rectifier 
and winding resiatan^e Is lumped into the resistance R^,    Also,  the 
parameters must be adjusted so that reverse voltage  is on the power cir- 
cuit rectifiers.     (In practical ca3e3, this is the assumption that 
breaks down under very largo signal conditions and limits the maximum 
output of the stage.)    The equations describing the oquivalen'   circuit 
of figure 13 are: 

t»   a Jy_S 
ls"Rfc ' 

i -^ 

(Di) 

(03) 

Since both reactors are in a saturated condition during thi3 interval 
no flux churge will occur in either reactor. The time t. is defined as 

4 
the time at which the operation of reactor 1 reaches point d 

23 
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in  figure  1?,     This means  that time t,   is  the time at, which the  net 

ampere-turns on reactor 1 equal the coercive value  (NI)i 

Ny ir, Ofl + Z NS »«,(U) v Nc »c (rO a (NI). (D4J 

Substituting equations   (Dl),   (D2), and   (D3)  with the definition of Vg 

fjiven  in figure 13 leads to: 

Jol;:tion of equation  (D5)  for the time t,  gives: 

(£>5) 

Vsr^n"' 
f^Ntj    Nc R* vfc' 
MV,    ~ Nr   ft*   Vf 

I* 
(06) 

If,  us  in equation  (A13)  of ,'ppendix A, a factor      OC    is defined as 

R^NT\ 

«0- a a - . (pfl 

and another factor     0^1   is defined us 

Then equation   (DC)   boconu;s 

(08) 

(OS) 

2L 
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4.  After the Lime t. the operation of reactor 1 proceeds down the side 

of the loop as shown by  the arrows In figure 12, while the operation of 
reactor 2 continues along the top of the loop arriving at point d at time 
tc.  During the interval t^ < t < t^ an amount of flux  A0 is changed 

in reactor 1 while no flux is changed in reactor 2. During this interval 
the equivalent circuit is shown in figure 14 with the previous assump- 
tions still applying. The equations describing this circuit are: 

N* 
visjrc

Cc* *•'*** • (DIO) 

v,-Mr«el+i.l2Rn» 
COlO 

2 N,t,, + N|.ir| +• Ntic =(Nl), (0(3) 

't-ZR, 
(OI4) 

(ois) 

Two quantities are desired from this set of equations — the voltage • 
cl 

to allow calculation of the flux change   A 0.   occurring in reactor  1 
during this interval, end the time tc at which the net ampere-turns in 
reactor 2 equals the coercive value  (NI). 

5.      The voltage ec    on the control winding of reactor 1 during the inter* 

val ty < t < tc  is round by simultaneous solution of equations   (DIO) 
through (D13)  to be: 

CC|r» 
1 + 

Vj sin u>t 

25 
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The time t^ is found by equating the net ampere turns on reactor 2 to 

the coercive value thus: 

Z N, is tM + Nr JrtOV) - Ne k (tr) « (N l). (on) 

Substitution of the appropriate values of the currents from equations 
(D12),  (Dli), and  (D15) leads to the evaluation of the tine t.l 

B»(NI) 

V-dr•" ^H (••*«[.*taa,ft*««r*f 
Using the value of OC defined in equation (D10) with the definition 

of   «2: 

tfTT^L'^W/^ , (bis) 

equation  (D18)   becomes 

tff= jjj-sin-'(oCo + ^V^), (oa<$) 

6.      During the interval  of time t. < t < t_ no flux change occurs in 
4 5 

reactor 2;   therefore, any flux change that occurs in reactor 1 during 
this interval will contribute to the total differential flux   A 0 
between the reactors at the end of the reset half-cycle.    Denoting the 
flux change in reactor 1 during the interval t, < t < t, as    A0j»  it 
is  found by Faraday's Law: 

26 
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(ozi) 

^b8tito„tUliX.Ttl0n  (D16)  int° BqUati0n  (D21> • ******* the inte- 

CwaS) 

and simplification of the resulting expression yields: 

~ «o)[sin=,C<**+<<itVc)-f»n-^o-«^(. (024> 
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7.  At the time t,- reactor 2 reaches point d of figure 12 and remains 

unsaturated (net ampere-turns equal to the coercive value (NI)) until 
time t^ when the operation of reactor 2 reaches point e on the loop of 
figure 12. During this interval of time (t«< t •< t^) the equivalent 

circuit is that shown in figure 15*  (The previous assumption'' still 
hold,) The equations describing this equivalent circuit aret 

Vc= ee,-«ct. -hie"*-, 

(p«ft 

(ozfi 

(025> 

(D3d> 

(D30 

Two quantities are desired from this set of equations — the voltage 
(e0    - «c )  to be u3ed in calculating  ihe flux difference   A02 esta- 
12 

blished  between reactors 1 and 2 during this  interval;  and the time t, 
which is defined as the time at which the voltage ec    goes to zero such 

that   %^<  tfe<%. 2 

8.      Simultaneous solution of equations  (D25)  through  (031) for the 
voltage (ec    - ec  ) yields 

«c, - ^ * 
1+2 »•/  we • -\nYl  R* 

(0*2) 

Note that this equation can be simplified to 
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Where 

The time t,   can be found  by solving equations   (D25)  through  (D31)  for 
the voltage ec    and finding the time such that *•%    < tfo < "t%j     ,   that 

makes this voltage zero.    Such a process yields for the time t, : 
6 

9.  The flux difference A 02 produced between the levels in reactors 
1 and 2 during the time interval t* < t < t^ is found from Faraday's Law: 

Substitution of the voltage (ec - e.,^) from equation (D33) into this J.l   c2 
expression and evaluation of the integral yields: 

(M7) 

Substituting from equation (D20) for time t and making use cf the 
identity: 5 

COS"' A « -f - f in"'* * (0*8) 

equation (D37) becomes: 

10. After the time t, the operation of reactor 1 continues down the 

side of the loop toward point f in figure 12, while the operation of 
reactor 2 goes from point e toward point g in the same figure. Defining 

*9 
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the  time ty us  the time at which reactor 1  reaches  point  f of figure 12, 
the equivalent circuit for the time  interval t/ < t < tj is once again 
that 3hovn in figure 1/, described  by equations   (D10)   through  (D15). 
During this time interval no flux is changed in reactor 2,   but an amount 
of flux is changed in rtuctor L and solution of equations  (D10)  tlirough 
(D15)  will shew that this flux change  is  the same as   A &i  (see equation 
(D2A)  while the time t? is: 

where time t,   is given by equation   (D9). 

11.    During the time interval t? < t<"%>       no flux is changed in either 

reactor;  consequently the net differential flux   J\0 produced between 
the flux levels in reactors 1 and 2 due to the control voltage V. during 
the reset half-cycle is: 

where    A 01  is given by equation   (D24) and     &0    by equation  (D39). 
Substitution of these values  into equation  (DAI) yields: 

*) /111 _J[siK'c«<,+«^) -si«-r«.-4jj.   ^ 

Note that for small sit^ials   (V—^O)  equation  (D42)  reduces to: 
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Acb =     K»N^r ^" cos-'*© . 
(D43) 

Which demonstrates  that for small signals  the flux difference    A 0 is 
a linear function of the control voltage. 
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APFEMDIX S 

ANALYSIS DURING RK3ET HALF=CYCLE OF CIRCUIT 
WITH SERIES RESET FOR DIRECT CONTROL VOLTAGE, V 

1.  When the control voltage has the polarity snown in figure 1(b) and 
t = 0 (start of the reset half-cycle), reactor 1 is operating at point a 
and reactor 2 is at point b on the loop of figure 12. As the supply 
voltage increases, the operation of both reactors proceeds to the left 
as shown by the arrows in figure 12, with reactor 1 reaching point d at 
time t,.    The operation of reactor 2 will reach point d at a later time t~» 

2.  Soroo assumptions are made to simplify the equivalent circuits 
during the reset half-cycle. Currents flowing during the reset half- 
cycle are sufficiently small that negligible voltage drops occur across 
the line resistance Rg and the load resistance R^. All the reset circuit 

resistance (rectifier forward and winding) is lumped into Rb. The cir- 

cuit parameters must be adjusted to maintain reverse voltage on the power 
circuit rectifiers. If this is not satisfied the control circuit will 
be loaded by the low rectifier forward resistance reflected through the 
power windings and very little control can be exercised* This is the 
condition that normally limits the maximum output o£ the amplifier* 

3.  In view of these assumptions the equivalent circuit of figure 1(b) 
for the interval of time 0 < t < t. is given in figure 16. The equa- 

tions describing this circuit are: 

\sih 

The operation of reactor 1 will reach point d at time %,  which is defined 
**• 

aa the time at which the net ampere-t.-.^ms on reactor 1 are equal to the 
coercive value (NT): 

Substituting into equation (EU)  from (Ei), (E2) and (E3) with tho value 
for the supply voltage given in figure 16 yields: 

32 
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-^V, Sir, rtfr-H-jg V« *ln •* * -fe V* - -(NI). (»*> 

Solution of this expression for the time t, gives: 

t «-i- Si""1 TEST  *• * VA <*A 

Using the definitions of OCQ and OC^ as given in Appendix D: 

*o = 
1 * TT: RM 

(e-ft 

and 

^3 ! 

1     N». «W 

M 

Equation  (Eb)   becomes: 

t^ — s/H-^-eoO. (ed) 

4*  After the tine t. the operation of reactor 1 proceeds down the side 
4 

of the loop as shown by the arrows in figure 12, while the operation of 
reactor 2 continues along the top of the loop arriving at point d at time 
tc. During the interval t,< t < t_ no flux is changed in reactor 2, but 

a flux change Zl 0, occurs in reactor 1. During this interval the 

equivalent circuit is shown in figure 17. The equations describing this 
circuit are: 

Vf •££«*,+•!***» (Bid) 
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•s*a 
2RW 

(Sift 

(£1$ 

(£13) 

(EI4) 

Two quantities are desired from these equations — the voltage ec to 

allow calculation of A 0,,  and the time tc at which the operation of 

reactor 2 reaches point d on the loop of figure 12. 
t 

5,  The voltage e„ on the control winding of reactor 1 during the inter- 
1 

val t, < t < t- is found bv solving equations (E10) through (E14.) to be: 

The time tf is found by equating the net ampere-turns on reactor 2 to 

the coercive value: 

Z NsUt.) 4- NMfy - Nc lft) - (HI). (El£) 

Jubstitutinn of the appropriate valuen of currents from equations (E10), 
(E12), and (E14.) leads to the evaluation of t,: 

(EI7) 

Using the definition of Oc' from equation (E7) and the definition 
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Equation (E17) becomes 

r.«ifr«ln",(*«,*,o*N0' (CIS) •5 to 

6.      During the  interval of time t. < t < t    no flux change occurs in 
reactor 2;  consequently,  the flux change    £ 0^ which occurs in reactor 1 
during this  interval contributes directly to the net differential flux 
produced between the reactors during the reaet half-cycle.    The flux 
difference     A 0,   can be found  from Faraday's Low: 

Substituting equation  (E15)   into  (E20) and performing the  integration 
yields: 

+ W*s£l »..*. (rr-u)l ("0 WFWT*~T 
Using the definitions of t from equation (E9) and t from (E19) and 

** 5 
Q     from equation (D23) of Appendix D, equation (E21) becomes: 
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7.  At the time t5, reactor 2 reaches point d of figure 12 and remains 

unsaturated until time t6 when the operation of reactor 2 reaches point * 

on the loop of figure 12. During this interval of time (t?< t < t6) 

the equivalent circuit is that shown in figure 18. The equations des- 
I        criblng this circuit ai 
1 

i 

Two quantities are desired from this set of equations — the voltage 
(ec - ec ) to be used in calculating the flux difference &s 0o eB^A~ 

blished between the reactors during this intervp-1, and the time t^ at 

which the voltage ec goes to Z9ru such that "%<„ < t < %, . 

3.  Solution of equations (E23) through (E23) for the voltage (e  - e  ) 
yields: °1   c2 

Note that in a  similar manner to that U3ed in Appendix 0, equation (E29) 
can be put in the form: 
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ecreC2a KXV* (Esdb 

Kis-£T- feaft 

The time t^ can be found by solving equations (E23) through (E28) for 

the voltage ec and equating it to zero to find time t such that 

V 

Evaluating the integral using equation (E30) gives: 

Substituting the time t.. from equation (E19) and using the identity: 

cos-a=*|--sin-*, C»3^ 

Equation (E34) becomes: 

10. After the time t. the operation of reactor 1 continues down the 
o 

aide of the loop toward point f in figure 12, while the operation of 
reactor 2 goes from point e toward point g in the same figure. Defining 
time t„ as the time at which reactor 1 reaches ooint f of figure 12, 

37 

9*      The flux difference produced between the levels in the two reactors 
during the interval of time t^ < t < t,   is found from Faraday's Law: 

i 
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the equivalent circuit for die time interval t, < t <^ t~ is once again 

Lliut, shown in figure 17 vitn equations (E10) through (EI4) describing the 
circuit. During this interval of time there is no flux change produced 
in roactor 2, while in reactor 1 a flux change A 0 occurs which is the 

ciume 13 that occurring during the interval t,< t < t,. This can be 

shown to be true by solution of the appropriate equations or by physical 
reasoning. 

LI.  At the time t„, found to be 

reactor 1 reaches point f on the loop of figure 12# During the interval 

of time t~ < t < "^oj   , no flux change occurs in either reactor; con- 

sequently the net flux change produced between the levels in the two 
reactors during the reset half-cycle due to a control voltage V 1st 

where A 0, is given by equation (E22) and A #2 by equation (E36). 

3ubr.Litution of these values into equation (E33) yields: 

+ JO^SS*' i coi <,W«*P-«,vft - COS £hiX**"W 

-r 

Note that for 3mall signals (V_—^0) equation (E39) reduces to- 
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This demonstrates that for small signuls the flux difference ZA 0 is a 
linear function of the control voltage. 
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APPENDIX F 

ANALYSIS DURING OPERATING HALF-CYCLE 
OF BOTH CIRCUITS FOR DIRECT CONTROL VOLTAGE,  Vc 

1.       In order to draw an equivalent circuit for the half-wave bridge 
magnetic amplifier for operation during the operating half-cycle, a num- 
ber of assumptions must be made.    The assumptions apply to both circuits 
of figure 1. 

a.    The saturated impedance of each arm cf the bridge  (resistance 
of one power winding plus the forward resistance of one rectifier)  is 
denoted P.-. and is assumed resistive, 

I. 

'L 
Rt.+l#(.+-Rs  4* (FZ) 

b. The voltage drops across the rectifier forward resistances and 
the load resistance due to reactor exciting currents are negligible* 

c. The reset circuits hav*» no effect on the circuit; hence they 
can be disregarded during this half-cycle of operation. 

d. When load current flows, it is very large compared to the 
exciting current. 

e. The control circuit presents a sufficiently high impedance to 
the load circuit that it can be disregarded, 

2.  Using the above assumptions the equivalent circuit for both figures 
1(a) and l(b) is shown in figure 19 for the time interval 0 < t < tg 

where tg is defined as the time at which the operation of reactor 2 

reaches point i in figure 12, During this interval the reactor fluxes 
change at the same rate; therefore, when the operation of reactor 2 
reaches point i in figure 12 (t = tg), an amount of flux  Zi 0 must be 
changed in reactor 1 before it, too, reaches point i. The time at which 
this occurs is defined as tg, 

3«  During the time interval tg c t < t« current is delivered to the 

load, The equivalent circuit, for this time interval is given in figure 
20.  In view of assumption (d) above, by simple voltage division: 

and 
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The flux change in reactor 1 during the time  interval ts < t < tq is, 
by Faraday's Law: ' y 

'••it/-**? (F3) 

While the average value of the load voltage is; 

(P4) 

and 

SL-g-(-      %    -\ U  gin «rt dr. («) 

Elimination of the integral between equations   (F5) and  (F6)  leads to: 

This is a gain equation describing the operation of the circuit during 
the operating half-cycle because the input on this half-cycle is the 
flux difference    A 0,  while the output is the load voltage V,. 

41 
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APPENDIX 0 

GAIN EQUATIONS AND OPTIMIZATION OF CONTROL CIRCUIT 
WITH PARALLEL RESET 

1.  Combining equations (D^2) of Appendix D and (F7) of Appendix P 
give.* the average load voltage V. as a function of the direct control 

voltage V : 

Vl-    \RL4-Rf/I Rc + K,N?     TT   C       V c/ 

/N. Rfc^ (31) 

This equation indicates the types and magnitudes of non-linearities in 
the trun;;fer function of this amplifier even when "ideal" components are 
assumed. 

2s  In a practical amplifier of this type tnere is a good usable range 
of output levels over which the gain is very nearly constant. Also, in 
servo applications the gain of interest in studying stability is the 
gain near zero control voltage. In this region the expression of equation 
(Gl) simplifies to: 

*-» C0S"'O<© , (Gii 

Good design information can be obtained by studying this expression. 
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3.  Inspection of equations (D7) and (D3£) of Appendix D shows that, 
neither K^ nor OC 0 is a function of the control turns Nc; therefore t' e 

expression given in equation (G2) can be maximized with reopoat to Nc by 
taking the partial rlerivative of the expression with re3poct to Mc and 
equating to zero thus: 

Solution of this expression for N yields: 

Substitution of this value for N„ into equation (G2) gives: c 

^X tt 
This equation holds true so long as Nc is adjusted according to equation 
(G4), in which case this is the maximum attainable gain if all the para- 
meters except Nc are fixed. 

4. The optimization of this expression with respect to the other para- 
meters is quite involved. The effect of each one on the gain can be 
investigated but it is rather difficult to derive simple conditions like 
that for the control turn^ above. 

5. If the power gain of the d-c component of the oatput is desired, 
this can be obtained from equation (G5) thus: 

Note that this expression is independent of the control circuit para- 
meters. Thus, with the design of the power and reset circuits and with 
the control turns adjusted according to equation (G4), equation (Gb) 
gives the maximum obtainable power pain through the circuit. 
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APPENDIX H 

GAIN EQUATIONS AND OPTIMIZATION OF CONTROL CIRCUIT 
WITH SERIES RESET 

1.      Combining equations  (E39) of Appendix E and equation (F7) of 
Appendix F gives the average load voltage VL as a function of the direct 
control  voltage V0» 

,JLaJ) 

M. St. V + til'WnJ I — -:--i/J._fli.VLl-CO« *in"
,(«.+«»V«0 

(Ml) 

2.  For small signals (Vc—+-0),  equation (HI) simplifies to: 

&4-M f K>Nc^ # cos- «.. (Ha 

This is the same form as equation (02) of Appendix G; hence, to adjust 
the control turns for optimum gain* the control turns must be ad.just.ed 
according to: 

Substitution of this value into equation (H2) yieldss 

U 

Note that except for the definitions of K2 and O*^ this expression is 
the same as equation (Gl) of Appendix G for the circuit with parallel 
reset. 
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I    '        This equation holds true when N0 il adjusted according to equation (H3). 

If all other parameters except Nc are fixed, this expression gives the 

maximum gain obtainable. 

^r/lLT^lSliVr-l"-^- SS for ccntSc! tun,. ce„ 
be derived for the other components. 

4.      The power gain to the d-c component of the output is : 

K\is-r-%^4>,',"-)1-        (M5) 

This expression Is lnd.pend.nh of «.t«lcircuit^Hn-rTUT^U 
thst wh«s everything ^ the control circuit Is "x of th. 

E^SWlLlSK.^ £   so lon6 .. th. centre! turns •„ 
are adjusted according to equation  kH3). 
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FIG. 6 - EQUIVALENT   CIRCUIT   WITH   PARALLEL   RESET - RE- 
SET   HALF-CYCLE-QUIESCENT  CONDITIONS   AND 
BOTH    REACTORS    SATURATED 
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FIG. 7- EQUIVALENT   CIRCUIT    WITH   PARALLEL   RESET- 
RESET    HALF-CYCLE —QUIESCENT   CONDITIONS 
AND   BOTH  REACTORS     UNSATURATED 
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FIG. 8 - EQUIVALENT CIRCUIT WITH SERIES RESET — 
RESET HALF-CYCLE—QUIESCENT CONDITIONS 
AND  BOTH  REACTORS  SATURATED 
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FIG. 9 — EQUIVALENT   CIRCUIT   WITH   SERIES   RESET — 
RESET   HALF-CYCLE — QUIESCENT   CONDITIONS 
AND   BOTH   REACTORS   UNSATURATED 
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FIG, 13 — EQUIVALENT   CIRCUIT  WITH  PARALLEL   RESET - 
RESET    HALF-CYCLE —SIGNAL  CONDITIONS AND 
BOTH   REACTORS   SATURATED 
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FIG. 14   EQUIVALENT CIRCUIT WITH PARALLEL RESET 
RESET HALF CYCLE— SIGNAL CONDITIONS 
AND ONE REACTOR SATURATED 
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FIG. 15 EQUIVALENT  CIRCUIT WITH PARALLEL RESET- 
RESET HALF-CYCLE—SIGNAL CONDITIONS 
AND BOTH REACTORS UNSATURATED 
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FIG. 16 EQUIVALENT CIRCUIT WITH SERIES RESET — 
RESET HALF- CYCLE — SIGNAL CONOSTIONS 
AND BOTH REACTORS SATURATED 
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FIG. 17 EQUIVALENT CIRCUIT WITH   SERIES RESET- 
RESET HALF-CYCLE-SIGNAL CONDITIONS AND 
ONE REACTOR SATURATED 
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FIG. 18 EQUIVALENT CIRCUIT WITH SERIES RESET- 
RESET HALF-CYCLE—SIGNAL  CONDITIONS 
AND BOTH REACTORS UNSATURATED 
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F!G !9   EQUIVALENT CIRCUIT—OPERATING 
HALF-CYCLE-SIGNAL CONDITIONS - 
BOTH REACTORS UNSATURATED 
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